Faberlic-partner.ru

Faberlic-partner.ru - фатоватый ресурс

Метки: Случайный процесс как модель источника сообщений, случайный процесс с независимыми приращениями, случайный процесс задан каноническим разложением, случайный процесс это.

Случа́йный проце́сс (случайная функция) в теории вероятностей — семейство случайных величин, индексированных некоторым параметром, чаще всего играющим роль времени или координаты.
Другое определение:
Случайным называется процесс u(t), мгновенные значения которого являются случайными величинами.

Содержание

Определение

Пусть дано вероятностное пространство . Параметризованное семейство случайных величин

,

где произвольное множество, называется случайной функцией.

Терминология

  • Если , то параметр может интерпретироваться как время. Тогда случайная функция называется случайным процессом. Если множество дискретно, например , то такой случайный процесс называется случа́йной после́довательностью.
  • Если , где , то параметр может интерпретироваться как точка в пространстве, и тогда случайную функцию называют случа́йным по́лем.

Данная классификация нестрогая. В частности, термин "случайный процесс" часто используется как безусловный синоним термина "случайная функция".

Классификация

  • Случайный процесс X(t) называется процессом дискретным во времени, если система, в которой он протекает, меняет свои состояния только в моменты времени t1, t2,…, число которых конечно или счетно. Случайный процесс называется процессом с непрерывным временем, если переход из состояния в состояние может происходить в любой момент времени.
  • Случайный процесс называется процессом с непрерывными состояниями, если значением случайного процесса является непрерывная случайная величина. Случайный процесс называется случайным процессом с дискретными состояниями, если значением случайного процесса является дискретная случайная величина:
  • Случайный процесс называется стационарным, если все многомерные законы распределения зависят только от взаимного расположения моментов времени , но не от самих значений этих величин. Другими словами, случайный процесс называется стационарным, если его вероятностные закономерности неизменны во времени. В противном случае, он называется нестационарным.
  • Случайная функция называется стационарной в широком смысле, если её математическое ожидание и дисперсия постоянны, а АКФ зависит только от разности моментов времени, для которых взяты ординаты случайной функции. Понятие ввёл А. Я. Хинчин.
  • Случайный процесс называется процессом со стационарными приращениями определенного порядка, если вероятностные закономерности такого приращения неизменны во времени. Такие процессы были рассмотрены Ягломом [1].
  • Если ординаты случайной функции подчиняются нормальному закону распределения, то и сама функция называется нормальной.
  • Случайные функции, закон распределения ординат которых в будущий момент времени полностью определяется значением ординаты процесса в настоящий момент времени и не зависит от значений ординат процесса в предыдущие моменты времени, называются марковскими.
  • Случайный процесс называется процессом с независимыми приращениями, если для любого набора , где , а , случайные величины , , ,  независимы.
  • Если при определении моментных функций стационарного случайного процесса операцию усреднения по статистическому ансамблю можно заменить усреднением по времени, то такой стационарный случайный процесс называется эргодическим.
  • Среди случайных процессов выделяют импульсные случайные процессы.

Траектория случайного процесса

Пусть дан случайный процесс . Тогда для каждого фиксированного  — случайная величина, называемая сечением. Если фиксирован элементарный исход , то  — детерминистическая функция параметра . Такая функция называется траекто́рией или реализа́цией случайной функции .

Примеры

  • , где называется стандартной гауссовской (нормальной) случайной последовательностью.
  • Пусть , и  — случайная величина. Тогда

является случайным процессом.

Примечания

  1. Яглом А. М. Корреляционная теория процессов со случайными стационарными параметрическими приращениями // Математический сборник. Т. 37. Вып. 1. С. 141—197. — 1955.

См. также

Источники

  • А. А. Свешников. Прикладные методы теории случайных функций. — Гл.ред.физ.-мат.лит., 1968.
  • С. И. Баскаков. Радио/технические цепи и сигналы. — Высшая школа, 2000.

Tags: Случайный процесс как модель источника сообщений, случайный процесс с независимыми приращениями, случайный процесс задан каноническим разложением, случайный процесс это.