Faberlic-partner.ru

Faberlic-partner.ru - фатоватый ресурс

Метки: Растительная клетка клеточный центр, растительная клетка в отличие от животной имеет клеточную оболочку пластиды, растительная клетка запасные вещества, растительная клетка тест, растительная клетка модель из пластилина.

(перенаправлено с «Растительная клетка»)
Перейти к: навигация, поиск
Строение растительной клетки.

Расти́тельные кле́ткиэукариотические клетки, однако несколькими своими свойствами они отличаются от клеток остальных эукариот. К их отличительными чертам относят:

Сравнение растительной и животной клеток

Признак Животные клетки Растительные клетки Исключения
Клеточная стенка Нет Есть (целлюлоза) Нет
Тип питания Гетеротрофные Автотрофные Растения-паразиты гетеротрофны
Пластиды Нет Есть Подземные побеги и растения-паразиты
лишены хлорофилла
Центриоли Есть Нет Нет
Центральная вакуоль Нет Есть У растений отсутствует в мёртвых и др.
специализированных клетках
Основное запасное
питательное вещество
Гликоген Крахмал Нет
Поры и плазмодесмы Нет Есть Нет
Целостные реакции клетки
(пиноцитоз, эндоцитоз, экзоцитоз, фагоцитоз)
Есть Нет Нет

Основные типы растительных клеток

Паренхимные клетки

Паренхимные клетки — это клетки, размеры которых во всех направлениях одинаковы или длина немного больше ширины[14]. Паренхиму растений называют также основной тканью[15].

Клетки паренхимы образуют однородные скопления в теле растения, заполняют пространства между другими тканями, входят в состав проводящих и механических тканей. Они могут выполнять различные функции: ассимиляционную, выделительную и др. Приспособленность паренхимных клеток к различным функциям обусловлена их функциональной специализацией протопластов. Присутствие в паренхиме (особенно рыхлой) межклетников определяет её участие в газообмене. Живые паренхимные клетки способны к делению; в паренхиме закладывается феллоген, а у растений с атипичным приростом в толщину — камбий (корнеплоды свёклы, некоторые лианы)[15].

Прозенхимные клетки

Прозенхимные клетки — это вытянутые (длина во много раз превышает ширину) и заострённые на концах (в отличие от паренхимы) клетки, различные по происхождению и функциям. Между прозенхимой (тканью, образованной прозенхимными клетками) и паренхимой имеются переходы, например, колленхима и лопастные ветвистые клетки мезофилла в листьях канны и др. растений[16].

Деление растительных клеток

Перемещение клип, показывающий этот процесс.

У растительных клеток имеется уникальная дополнительная фаза митоза — препрофаза. Она предшествует профазе и включает два основных события:

В остальном митоз растительных клеток проходит так же, как у остальных эукариот, только цитокинез у них протекает с использованием специальных структур — фрагмопласта (у высших растений и некоторых водорослей), фикопласта (у нек. других водорослей) и др.

Клеточная стенка

Клеточная стенка имеется не только растительных клеток: она есть у грибов и бактерий, но только у растений она состоит из целлюлозы (исключением являются грибоподобные организмы оомицеты, чье клеточная стенка также состоит из целлюлозы).

Структура и химический состав

Клеточная стенка образуется из клеточной пластинки, причём сначала формируется первичная, а затем вторичная клеточная стенка. Строение клеточной стенки двух этих типов напоминает устройство железобетонных блоков, в которых присутствует металлический каркас и связующее вещество — цемент. В клеточной стенке каркасом являются пучки молекул целлюлозы, а связующим веществом служат гемицеллюлоза и пектины, которые образуют матрикс клеточной стенки. Эти вещества транспортируются во время роста клеточной пластинки из комплекса Гольджи к плазматической мембране, где пузырьки сливаются с ней и посредством экзоцитоза выбрасывают содержимое наружу[18].

Помимо указанных веществ, в оболочке одревесневших клеток содержится лигнин, повышающий их механическую прочность и понижающий водонепроницаемость. Кроме того, в оболочке клеток некоторых специализированных тканей могут накапливаться гидрофобные вещества: растительные воска, кутин и суберин, откладывающийся на внутренней поверхности стенок клеток пробки и составляющий пояски Каспари[19].

Первичная и вторичная клеточные стенки

Первичная клеточная стенка содержит до 90% воды и характерна для меристематических и малодифференцированных клеток. Эти клетки способны изменять свой объём, но не за счёт растяжения целлюлозных фибрилл, а смещения относительно друг друга этих фибрилл.

Некоторые клетки, например, мезофилла листа, сохраняют первичную оболочку и по достижении нужных размеров перестают откладывать в неё новые вещества. Однако у большинства клеток этот процесс не прекращается, и между плазматической мембраной и первичной оболочкой у них откладывается вторичная клеточная стенка. Она имеется принципиально схожее с первичной строение, но содержит значительно больше целлюлозы и меньше воды. Во вторичной стенке обычно различают три слоя — наружный, самый мощный средний и внутренний[20].

Поры

Во вторичной стенке имеется большое количество пор[20]. Каждая пора представляет собой канал в том месте клеточной оболочки, в котором над первичным поровым полем не откладывается вторичная оболочка[21]. Первичное поровое поле — это небольшой участнок тонких смежных стенок двух клеток, стостоящий из первичной оболочки и клеточной пластинки, пронизанный плазмодесмами[22]. Поры возникают парно в смежных клетках соседних клеток и разделены замыкающей трёхслойной[22] плёнкой (поровой мембраной)[21]. Различают поры:

  • Простые поры представляют собой каналы во вторичной оболочке паренхимных клеток и склереид, имеющие одинаковую ширину на всем протяжении.
  • Окаймлённые поры — это поры, окаймление которых составляет куполообразно приподнятая над поровой мембраной вторичная оболочка. В плане такая пора имеет вид двух окружностей, наружная из которых соответствует окаймлению, а внутренняя — отверстию, открывающемуся в полость клетки. Характерны для водопроводящих элементов, представленных мёртвыми клетками.
  • Полуокаймлённые поры — пара пор, одна из которых — простая, другая — окаймлённая. Образуется в смежных стенках трахеид хвойных и паренхимных клеток древесинных лучей.
  • Слепые поры представляют собой каналы во вторичной оболочке только одной из двух соседних клеток, такие поры не функционируют.
  • Ветвистые поры — поры, разветвлённые на одном из концов вследствие слияния двух или нескольких простых пор в процессе утолщния вторичной оболочки.
  • Щелевидные поры — поры с отверстиями в виде косой щели; образуются в клетках прозенхимы, например, волокнах древесины[23].

Плазмодесмы

Схематическая структура плазмодесмы.
1 — клеточная стенка
2 — плазмолемма
3 — десмотубула
4 — эндоплазматический ретикулум
5 — белки плазмодесмы

Плазмодесма — это тончайший тяж цитоплазмы, канал, связывающий протопласты соседних клеток[24]. Эти каналы по всей длине выстланы плазматической мембраной. Через плазмодесмы проходит полая структура — десмотубула, через неё элементы ЭПР соседних клеток сообщаются между собой.

Через плазмодесмы осуществляется свободный транспорт веществ. Предполагают, что ситовидные поля флоэмы также представляют собой крупные плазмодесмы[25].

Внутреннее пространство растения, объединяющее все протопласты, связанные посредством плазмодесм, называют симпластом, соответственно, транспорт через плазмодесмы называют симпастическим[26].

Функции

Клеточные стенки растений выполняют следующие функции:

  • обеспечение возможности тургора (не будь её, внутриклеточное давление разорвало бы клетку);
  • роль наружного скелета (то есть придаёт форму клетке, определяет рамки её роста, обеспечивает механическую и структурную поддержку);
  • запасает питательные вещества[26];
  • защита от внешних патогенов.

Органеллы

Пластиды

Пластиды — органеллы растительной клетки, состоящая из белковой стромы, окружённой двумя липопротеидными мембранами. Внутренняя из них образует внутрь выросты (тилакоиды, или ламеллы)[27].

Пластиды, как и митохондрии, являются самовоспроизводящимися органеллами и имеют собственный геном — пластом, а также рибосомы.

У высших растений все пластиды происходят от общего предшественника — пропластид, которые развиваются из двумембранных инициальных частиц.

Пластиды присущи исключительно растениям[28]. Различают три основных типа пластид:

  • Лейкопласты. Эти пластиды не содержат никаких пигментов, внутренняя мембранная система, хотя и присутствует, но развита слабо. Разделяют амилопласты, запасающие крахмал, протеинопласты, содержащие белки, элайопласты (или олеопласты), запасающие жиры. Этиопласты — это бесцветные пластиды растений, которые выращивали без освещения. При наличии света они легко превращаются в хлоропласты[29].
  • Хромопласты — пластиды жёлто-оранжевого цвета, обусловленного наличием в них пигментов каротиноидов: каротина, ксантофилла, лютеина, зеаксантина и др. Образуются из хлоропластов при разрушении в них хлорофилла и внутренних мембран[30]. Кроме того, хромопласты мельче хлоропластов по размерам. Каротиноиды присутствуют в хромопластах в виде кристаллов или растворёнными в каплях жира (такие капли называют пластоглобулами). Биологическая роль хромопластов до сих пор неясна[31].
Ультраструктура хлоропласта:
1. наружняя мембрана
2. межмембранное пространство
3. внутренняя мембрана (1+2+3: оболочка)
4. строма (жидкость)
5. тилакоид с просветом (люменом) внутри
6. мембрана тилакоида
7. грана (стопка тилакоидов)
8. тилакоид (ламела)
9. зерно крахмала
10. рибосома
11. пластидная ДНК
12. пластоглобула (капля жира)
  • Хлоропласты — пластиды в виде двояковыпуклой линзы, окружённые оболочкой из двух липопротеидных мембран. Внутренняя из них образует длинные выросты в белковую строму — тилакоиды стромы и более мелкие, расположенные стопками тилакоиды гран, соединённые между собой тилакоидами стромы. С белковым слоем мембран тилакоидов связаны пигменты: хлорофилл и каротиноиды. В хлоропластах осуществляется фотосинтез. Первичный крахмал, синтезированный хлоропластами, откладывается в строме между тилакоидами[32].

Гигантские хлоропласты водорослей, присутствующие в клетке в единственном числе, называются хроматофорами. Их форма может быть очень разнообразной[28].

Вакуоли

Вакуоль. Тонопласт выделен зелёным.

Вакуоль — полость в клетке, заполненная клеточным соком и окружённая мембраной — тонопластом. Вещества, содержащиеся в клеточном соке, определяют величину осмотического давления и тургор клеточной оболочки.

Вакуоли образуются из провакуолей — небольших мембранных пузырьков, отшнуровывающихся от ЭПР и комплекса Гольджи. Потом пузырьки сливаются, образуя более крупные вакуоли. Только у старых вакуолей все вакуоли могут сливаться в одну гигантсвую центральную вакуоль, обычно же клетка, помимо центральной вакуоли, содержит мелкие вакуоли, наполненные запасными веществами и продуктами обмена[33].

Вакуоли выполняют в клетке следующие основные функции:

  • создание тургора;
  • запасание необходимых веществ;
  • отложение веществ, вредных для клетки;
  • ферментативное расщепление органических соединений (это сближает вакуоли с лизосомами)[34].

Включения растительных клеток

  • трофические включения:
    • крахмальные зёрна;
    • белковые гранулы (в гиалоплазме, пластидах, ЭПР, вакуолях, ядре). Чаще всего белковые отложения обнаруживают в виде алейроновых зёрен, представляющих собой наполненные белком обезвоженные вакуоли.
    • липидные капли — мощный источник энергии. Энергетическая ценность липидов вдвое выше, чем у белков или углеводов, поэтому содержащие их ткани или семена могут иметь меньшую массу и размеры.
  • включения, не имеющие энергетической ценности, как правило, отходы жизнедеятельности. Чаще всего встречаются кристаллы оксалата кальция[35].

Примечания

  1. JA Raven (1997) The vacuole: a cost-benefit analysis. Advances in Botanical Research 25, 59–86
  2. RA Leigh and D Sanders (1997) Advances in Botanical Research, Vol 25: The Plant Vacuole. Academic Press, California and London. ISBN 0-12-441870-8
  3. Oparka, KJ (1993) Signalling via plasmodesmata-the neglected pathway. Seminars in Cell Biology 4, 131–138
  4. Hepler, PK (1982) Endoplasmic reticulum in the formation of the cell plate and plasmodesmata. Protoplasma 111, 121–133
  5. Anderson S, Bankier AT, et al. (1981) Sequence and organization of the human mitochondrial genome. Nature 290, 4–65
  6. L Cui, N Veeraraghavan, et al. (2006) ChloroplastDB: the chloroplast genome database. Nucleic Acids Research, 34, D692-696
  7. L. Margulis (1970) Origin of eukaryotic cells. Yale University Press, New Haven
  8. Lewis, LA, McCourt, RM (2004) Green algae and the origin of land plants. American Journal of Botany 91, 1535–1556
  9. López-Bautista, JM, Waters, DA and Chapman, RL (2003) Phragmoplastin, green algae and the evolution of cytokinesis. International Journal of Systematic and Evolutionary Microbiology 53, 1715–1718
  10. Manton, I. and Clarke, B. (1952) An electron microscope study of the spermatozoid of Sphagnum. Journal of Experimental Botany 3, 265–275
  11. D.J. Paolillo, Jr. (1967) On the structure of the axoneme in flagella of Polytrichum juniperinum. Transactions of the American Microscopical Society, 86, 428–433
  12. PH Raven , Evert RF, Eichhorm SE (1999) Biology of Plants, 6th edition. WH Freeman, New York
  13. Билич, Крыжановский, 2009, с. 136
  14. Лотова, Нилова, Рудько, 2007, с. 58
  15. ↑ Паренхима — статья из Большой советской энциклопедии
  16. Прозенхима — статья из Биологического энциклопедического словаря
  17. 10.1186/1741-7007-3-11. PMID 15831100.
  18. Билич, Крыжановский, 2009, с. 140
  19. Билич, Крыжановский, 2009, с. 146—147
  20. 1 2 Билич, Крыжановский, 2009, с. 143
  21. 1 2 Лотова, Нилова, Рудько, 2007, с. 65
  22. 1 2 Лотова, Нилова, Рудько, 2007, с. 59
  23. Лотова, Нилова, Рудько, 2007, с. 65—66
  24. Лотова, Нилова, Рудько, 2007, с. 62
  25. Билич, Крыжановский, 2009, с. 144
  26. 1 2 Билич, Крыжановский, 2009, с. 148
  27. Лотова, Нилова, Рудько, 2007, с. 62—63
  28. 1 2 Билич, Крыжановский, 2009, с. 149
  29. Билич, Крыжановский, 2009, с. 154
  30. Лотова, Нилова, Рудько, 2007, с. 90
  31. Билич, Крыжановский, 2009, с. 152
  32. Лотова, Нилова, Рудько, 2007, с. 89
  33. Лотова, Нилова, Рудько, 2007, с. 17—18
  34. Билич, Крыжановский, 2009, с. 157—160
  35. Билич, Крыжановский, 2009, с. 163—167

Литература

  • Билич Г.Л., Крыжановский В.А. Биология. Полный курс: В 4 т. — издание 5-е, дополненное и переработанное. — М.: Издательство Оникс, 2009. — Т. 1. — 864 с. — ISBN 978-5-488-02311-6
  • Лотова Л.И., Нилова М.В., Рудько А.И. Словарь фитоанатомических терминов: учебное пособие. — М.: Издательство ЛКИ, 2007. — 112 с. — ISBN 978-5-382-00179-1


Tags: Растительная клетка клеточный центр, растительная клетка в отличие от животной имеет клеточную оболочку пластиды, растительная клетка запасные вещества, растительная клетка тест, растительная клетка модель из пластилина.